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The Maxwell equations  
– how charges produce fields 

Total of 8 equations, but only 6 independent variables (3 components each for E,B) 

Where are the two extra equations hidden? 

“Constrained transport” of magnetic field 
Conservation of magnetic monopoles ( equal zero in our universe) 

Conservation of (electric) charge 

Therefore the Maxwell equations actually have in-built conservation of electric and 
magnetic charges! (therefore total independent equations are 6 only) 

See Jackson 3ed Ch 6.11 for more about this  
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Energy momentum equations  
– How fields affect particles 

Lorentz force equation 

Work done by EM field on charges 

For fluids, they translate to 

Recall energy equation of fluid 



The scalar and vector potentials 

Given the Maxwell equations,  and 

One can define a scalar potential 𝜙 and a vector potential 𝐴  which have the relations 

with 𝐸   and 𝐵  as 

However, we can see that any change of 𝜙 and 𝐴  that follow  

Will still give the same 𝐸   and 𝐵  fields 

This is called “gauge invariance”, we have the freedom to choose some Z that would 
make problems easier. 
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The Lorenz Gauge 
Applying the definitions 

One can transform the two source equations 

into 

This is not the Lorentz as in Lorentz transformations!        Ludvig Lorenz (1829~1891) Hendrik Lorentz (1853~1928) 

Often when the problem involves waves, a convenient gauge is the “Lotenz Gauge” 

Which, through  also tells us that  

Applying the Lorenz Gauge condition, the two potential equations become 
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Linearly polarized plane EM waves 
in vacuum 
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Which gives 

The Lotenz gauge condition  gives 

−
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It also has the wave solution 
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′
= 𝐴 + 𝛻𝑍 

Then tells us that 



Building the spacetime compatible 
form of electromagnetism 

To work in spacetime, we need equations to be in tensor form such that they will be 
valid in any frame, in harmony with the principle of relativity. 
 
It is therefore crucial to rewrite the whole set of equations in 4-form, either with 4-
vectors or tensors. 
 
Previously, we started off with the electric and magnetic fields from the Maxwell’s 
equations and finally came to another fully equivalent form in describing things – the 
potentials. 
 
Here, we will do the reverse, we work out the potential in 4-form then find some 
suitable tensor to fit in the electric and magnetic fields. 



The current 4-vector 
𝜕𝜌

𝜕𝑡
+ 𝛻 · 𝐽 = 0 Recall the charge continuity equation 

Observing closely, we see that if we define  𝐽𝜇 = 𝜌, 𝐽 , then using  
𝑥𝜇 = 𝑡, 𝑥, 𝑦, 𝑧 , the continuity equation can very simply be written as  
 

𝜕𝐽𝜇

𝜕𝑥𝜇
≡ 𝐽𝜇,𝜇 = 𝜕𝜇𝐽

𝜇 = 0 

 
(contracting a vector and a one-form gives a scalar) 
 
What this says is that 𝐽𝜇 is the correct 4-vector that compatible with space-time 
transforms! 
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=
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The potential 4-vector 
1
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We can see that in both cases we have the operator  
𝜕2

𝜕𝑡2
− 𝛻2 acting on either 𝜙 or 𝐴 . 

 
Is that operator also related to some 4-vector? 
 
Apparently, Yes! It is the square of the gradient operator! 

𝜕𝜇𝜕𝜇 = −(
𝜕2

𝜕𝑡2
− 𝛻2) 

 

Then, since 𝐽𝜇 = 𝜌, 𝐽  is a 4-vector as we have demonstrated, we can also define the 

4-potential  

𝐴𝜇 ≡ 𝜙, 𝐴  

 
Then, the wave equations are simply, in 4-form, 
 

𝜕𝛼𝜕𝛼𝐴
𝛽 = −4𝜋𝐽𝛽 

And the Lorenz gauge condition 
𝐴𝛼,𝛼 = 0 Reminder: 𝛻 · 𝐴 +

1
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𝜕𝜙

𝜕𝑡
= 0 



Gauge-free form 

Recall that before we took the Lorenz gauge, our equations for the potentials looked like: 

By applying the definitions  𝐽𝜇 = 𝜌, 𝐽  ; 𝐴𝜇 ≡ 𝜙, 𝐴  ; 𝜕𝜇𝜕𝜇 = (𝛻
2 −

𝜕2

𝜕𝑡2
) 

𝜕𝛼𝜕𝛼𝐴
𝛽 − 𝜕𝛽𝜕𝛼𝐴

𝛼 = −4 𝜋 𝐽𝛽 

𝛻 · 𝐷 = 4𝜋𝜌 𝛻 × 𝐻 −
1

𝑐
 
𝜕 𝐷 

𝜕𝑡
=
4 𝜋

𝑐
 𝐽  

Since the equations for the potentials originally came from  

We should be able to manipulate 𝜕𝛼𝜕𝛼𝐴
𝛽 − 𝜕𝛽𝜕𝛼𝐴

𝛼 = −4 𝜋 𝐽𝛽 into something that 
gives us the Maxwell equations in terms of E and B fields 
 

We find the 4-form for the above 2 equations as  



Towards the Maxwell equations 

Lets rewrite  𝜕𝛼𝜕𝛼𝐴
𝛽 − 𝜕𝛽𝜕𝛼𝐴

𝛼 = −4 𝜋 𝐽𝛽 as 𝜕𝛼(𝜕
𝛼𝐴𝛽 − 𝜕𝛽𝐴𝛼) = −4 𝜋 𝐽𝛽  

𝛻 · 𝐷 = 4𝜋𝜌 𝛻 × 𝐻 −
1

𝑐
 
𝜕 𝐷 

𝜕𝑡
=
4 𝜋

𝑐
 𝐽  Comparing with  

It should be clear that as the Maxwell equations contain only 1st derivatives, 

𝜕𝛼𝐴𝛽 − 𝜕𝛽𝐴𝛼should be some 2nd rank tensor that contains that E and B fields. 

𝐵 = 𝛻 × 𝐴  𝐸 = −𝛻𝜙 −
1

𝑐
 
𝜕 𝐴 

𝜕𝑡
 

𝐹αβ ≡ 𝜕𝛼𝐴𝛽 − 𝜕𝛽𝐴𝛼 

𝐹αβ =

0 𝜕0𝐴1 − 𝜕1𝐴0 𝜕0𝐴2 − 𝜕2𝐴0 𝜕0𝐴3 − 𝜕3𝐴0

− 𝜕0𝐴1 − 𝜕1𝐴0 0 𝜕1𝐴2 − 𝜕2𝐴1 𝜕1𝐴3 − 𝜕3𝐴1

− 𝜕0𝐴2 − 𝜕2𝐴0 − 𝜕1𝐴2 − 𝜕2𝐴1 0 𝜕2𝐴3 − 𝜕3𝐴2

− 𝜕0𝐴3 − 𝜕3𝐴0 − 𝜕1𝐴3 − 𝜕3𝐴1 − 𝜕2𝐴3 − 𝜕3𝐴2 0

=
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=

0 𝐸𝑥 𝐸𝑦 𝐸𝑧
−𝐸𝑥 0 𝐵𝑧 −𝐵𝑦
−𝐸𝑦 −𝐵𝑧 0 𝐵𝑥
−𝐸𝑧 𝐵𝑦 −𝐵𝑥 0

 



The Maxwell’s equations in 4-form 

As we defined  the Minkowski metric as 𝜂αβ =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 

the Faraday tensor has the form we derived 
 

𝐹αβ ≡ 𝜕𝛼𝐴𝛽 − 𝜕𝛽𝐴𝛼 =

0 𝐸𝑥 𝐸𝑦 𝐸𝑧
−𝐸𝑥 0 𝐵𝑧 −𝐵𝑦
−𝐸𝑦 −𝐵𝑧 0 𝐵𝑥
−𝐸𝑧 𝐵𝑦 −𝐵𝑥 0

 and 𝐹αβ ≡

0 −𝐸𝑥 −𝐸𝑦 −𝐸𝑧
𝐸𝑥 0 𝐵𝑧 −𝐵𝑦
𝐸𝑦 −𝐵𝑧 0 𝐵𝑥
𝐸𝑧 𝐵𝑦 −𝐵𝑥 0

 

 

Same in Griffiths, 
Introduction to 
Electrodynamics 3ed 

The source equation 𝜕𝛼(𝜕
𝛼𝐴𝛽 − 𝜕𝛽𝐴𝛼) = −4 𝜋 𝐽𝛽 then becomes 𝜕𝛼𝐹

αβ = −4 𝜋 𝐽𝛽 
 

Or, since 𝐹αβ= −𝐹βα (2nd rank anti-symmetric tensor), 𝜕𝛼𝐹
βα = 4 𝜋 𝐽𝛽  → 𝜕β𝐹

αβ = 4 𝜋 𝐽α 



The Maxwell’s equations in 4-form 
(cont’) 

Also, we can define another 2nd rank tensor 
(sometimes called the Maxwell tensor)  

𝐺αβ ≡

0 𝐵𝑥 𝐵𝑦 𝐵𝑧
−𝐵𝑥 0 −𝐸𝑧 𝐸𝑦
−𝐵𝑦 𝐸𝑧 0 −𝐸𝑥
−𝐵𝑧 −𝐸𝑦 𝐸𝑥 0

 

Note that in Jackson, one finds   𝐹αβ ≡

0 −𝐸𝑥 −𝐸𝑦 −𝐸𝑧
𝐸𝑥 0 −𝐵𝑧 𝐵𝑦
𝐸𝑦 𝐵𝑧 0 −𝐵𝑥
𝐸𝑧 −𝐵𝑦 𝐵𝑥 0

 

This is because Jackson uses the metric  𝜂αβ =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 

𝐹αβ ≡

0 𝐸𝑥 𝐸𝑦 𝐸𝑧
−𝐸𝑥 0 𝐵𝑧 −𝐵𝑦
−𝐸𝑦 −𝐵𝑧 0 𝐵𝑥
−𝐸𝑧 𝐵𝑦 −𝐵𝑥 0

  Faraday tensor 

Different by a minus sign 

Looking at page 11 where we derived the Faraday tensor will show why. 

𝐵 = 𝛻 × 𝐴  𝐸 = −𝛻𝜙 −
1

𝑐
 
𝜕 𝐴 

𝜕𝑡
 Can also be expressed as 𝜕𝛽𝐺

αβ = 0 



The Maxwell’s equations in 4-form 
(cont’) 

We can also show that 𝜕𝛽𝐺
αβ = 0 can be written as 𝜕𝛼𝐹βγ + 𝜕𝛽𝐹γα + 𝜕𝛾𝐹αβ = 0 

 
which basically is just an identity.  
 

This means that by defining 𝐹αβ ≡ 𝜕𝛼𝐴𝛽 − 𝜕𝛽𝐴𝛼 we have already included the 
homogeneous Maxwell equations. 



4-force 
Previously, we have defined the equations 𝑈𝛼 ≡

dx𝛼

dτ
; 𝑃𝛼 ≡ 𝑚0 𝑈

𝛼; 𝐹α =
dPα

dτ
 

Thus,  
dPα

dτ
=
𝑞

𝑐
 𝐹αβ 𝑈𝛽 

 
Simultaneously contains the work done by the E field and the Lorenz force. 

𝐹αβ =

0 𝐸𝑥 𝐸𝑦 𝐸𝑧
−𝐸𝑥 0 𝐵𝑧 −𝐵𝑦
−𝐸𝑦 −𝐵𝑧 0 𝐵𝑥
−𝐸𝑧 𝐵𝑦 −𝐵𝑥 0

 Now, compare  

Then one can see that what is left to write out the electromagnetic 4-force is 𝑈𝛼 

Equation 6.116 is wrong!! It should be the one-form 4-velocity 



Plane EM waves in 4-form 
Previously, we found that in the Lorenz gauge 𝜕𝛼𝜕𝛼𝐴

𝛽 = −4𝜋𝐽𝛽, 
 

Therefore the source free equation is 𝜕𝛼𝜕𝛼𝐴
𝛽 = 0, which has the solution 

We see that the phase term 𝑘 · 𝑥 = −ωt + 𝑘𝑥 𝑥 + 𝑘𝑦 𝑦 + 𝑘𝑧 𝑧 

 
Then, since phase is also a scalar, (sorry I don’t have a very good explanation for this), 

we can rewrite 𝑘 · 𝑥 = −ωt + 𝑘𝑥 𝑥 + 𝑘𝑦 𝑦 + 𝑘𝑧 𝑧 = 𝜂αβ 𝑘
𝛼 𝑥𝛽 

 

𝑘𝛼 = 𝜔, 𝑘
 

  

𝜕𝛼𝜕𝛼𝐴
𝛽 = 0 then gives 𝜂αβ 𝑘

𝛼 𝑘𝛽 = −𝜔2 + 𝑘2 = 0 → photons travel along null vectors 

  



Fluid aspects next week 




